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Insights for better algorithms
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Warren S. McCulloch and Walter Pitts (1943). A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics




Insights for better algorithms

g .
How does the brain interprets images? p ’ The way_ our_braln Process
=20 images inspire the development

# The ventral (recognition) pathway in the visual cortex has multiple stages .
——. . —. 3 o ——— of convolutional neural network
(CNN).
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Al as a tool to analyze neural / behavioral data

External World (stimuli)

1 An Al to

(simulate) neural signals?

10'2 neurons in human brain

1 Another Al to

Senses
Action
Emotion
Cognition

neural signals?

What are problems of the end-to-end

Not possible to record all neurons
No enough training datasets
* No enough computational power to fit data

« Even though we can do all these, we know
from the model.

A good Al in neuroscience shall not only
fit the data, but also provide insights to
explain the underlying mechanisms
of how the brain works.



Visual pathways (perceptual integration)

-=- the and ventral streams

the motion & spatial location

‘where’ pathway
« V1,V2, V3, MT (V5), MST & inferior parietal

& cortex
4”/7“. entral ‘what’ pathway . ihe detailed features, form & object identity
: «vl\/‘//////% « V1, V2, V4 & inferior temporal areas

\\&’__

Goodale MA, Milner AD (1992). Separate visual pathways for perception and action. Trends Neurosci



Insights for better algorithms

Encoding Decoding
da Stimulus > Neurons > Behavior
/\ /—‘F b V1 [re0000) V2 (e0000]
/ \ ) ) \
£ 1\’4\\ N V4 cIr AIT
4
/”'

.
S

< - -- < ----
100-ms / 1 4 |
Pixels visual 4 20000 /4
presentation A ’
4 ’
’ ’

"| llmll

i

Spatial convolution
over image input

—D—>

Operations in linear-nonlinear layer
Figure 1 HCNNs as models of sensory 30,
cortex. (a) The basic framework in which ® 0, —)E—) —>©
sensory cortex is studied is one of encoding—the process by which stimuli are transformed 8% threshold Pool Normalize
into patterns of neural activity—and decoding, the process by which neural activity generates Filter

behavior. HCNNs have been used to make models of the encoding step; that is, they describe

DiCarlo and Cox (2007) TiCS;  Yamins (2016) nature neurosci; Bashivan (2019) Science



Brain score: how well existing Al models explain the neural data

http://www.brain-score.org/#leaderboard
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Deep learning as computational models to understand the
brain

Train BOTH the monkey and ANNSs to perform the same task (object discrimination task)
involving challenging naturalistic visual objects.

a Decoder
Primate ventral stream layer

Compared to purely feedforward
Report networks, recurrently-connected
objec
deep networks are better at
predicting responses of higher visual
Feedforward DCNNs )
<+— Approximation of retina, LGN, V1, V2, V4 ~ > Approximation s area neurons to behaVIOra”y

of IT layer _ .
N EJ challenging images.

K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo. (2019) Evidence that recurrent circuits are critical
to the ventral stream’s execution of core object recognition behavior. Nature neuroscience

Report
object
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Deep learning as computational models to understand the
brain

Train BOTH the monkey and ANNSs to perform the same task (i.e., object discrimination task)
involving challenging naturalistic visual objects.
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K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo. (2019) Evidence that recurrent circuits are critical
to the ventral stream’s execution of core object recognition behavior. Nature neuroscience



Q1. Can information from the brain help Al?
Q2. Is an Al model with better task performance
more similar to the brain?



Assumption:
* An Al model that is contrained to predict the brain activity will gain
some knowledge that will make it better at its task.

Core ideas:

* By maximizing the representation similarity between biological
neurons and artificial neurons, the Al model (implicitly) picks up
(some of) the computations by the brain .

« By adding useful information from the brain into Al model, the task
performance would improve.




Mapping function: from V4 in the brain to L3 of AlexNet

Eb_

L1 L2 L3 L4 Label

Ascending dimension
transform

This framework would allow
1) to recognize object, and even
2) to reconstruct visual image
by biological neural population activity via Allle



Image
presented to
monkeys

ImageNet
to pre-train
Alexnet
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Neural responses in V4 and IT

flower




Autoencoder allows bidirectional transform between V4 and L3

| mee | Loss function

O-Conv Encoder FR Decoder R-Conv L=Amsel + (1- 1) mes2

Operation kernel stride Features padding
mse2 Input OriginConuv3 - - (12.12,384) -
Convolution 1x1 1=1 32 0
Latent 3 . 784
Real neurons’ FR Dense - - 4608
Reshape 3 3 (12,12,32) -
Transposed Convolution 1 x1 1 x1 384 0

Input ReconConuv3 - - (12,12.384)
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Object recognition
by AlexNet

Object recognition
by V4 neurons
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Preliminary results: image reconstruction

Reconstructed images
By AE
Image reconstruction
via biological neural
responses is not good.
-=>
Image reconstruction
via combining DAE
and neural responses.

Ground-truth images

Firing rate in
biological neurons

Reconstructed images
By biological neurons




DAE-NR: Deep Auto-encoder with Neural
Response

Deep Auto-encoder with Neural Response (a)
Xuming Ran!, Jie Zhang?®, Ziyuan Ye', Haiyan Wu*, Qi Xu®, .
Huihui Zhou®* and Quanying Liu'* ¥ EDAERERY AN~
Southern University of Science and Technology, China 1B BEMAESI _ latent
ZShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China baselineA®y ;

3University of the Chinese Academy of Sciences, China
4Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau
5School of Artificial Intelligence, Dalian University of Technology, China X
5Pengcheng Laboratory, China

Abstract

Artificial intelligence and neuroscience are deeply
interactive. Artificial neural networks (ANNSs) have

X : stimuli
X : reconstructed stimuli

been a versatile tool to study the neural represen- (b) i E
tation in the ventral visual stream, and the knowl- : :
edge in neuroscience in return inspires ANN mod- CNN-FREERY . § : biological neural response !
els to improve performance? in t:he ta§k. Howe_ver, FIEAR AT S i § : artificial neural response E
how to merge these two directions into a unified baselinet&iZl : ! :
model has less studied. Here, we propose a hybrid - ; ! . o !
model, called deep auto-encoder with the neural L hy representation of artificial
response (DAE-NR), which incorporates the infor- 9‘% $ oo s i neurons in the ith convolutional :
mation from the visual cortex into ANNSs to achieve ! layer i
better image reconstruction and higher neural rep- T """""""""""""""" '
resentation similarity between biological and arti- h;

ficial neurons. Specifically, the same visual stim-

uli (i.e., natural images) are input to both the mice (C) _____________

brain and DAE-NR. The DAE-NR jointly learns P P /7

to map a specific layer of the encoder network to DAE-NRARZY 7] AN I’ I’ " '

the biological neural responses in the ventral visual i3 EL2AMES i atam I I I I

stream by a mapping function and to reconstruct Ly R R G

the visual input by the decoder. Our experiments
demonstrate that if and only if with the joint learn-
ing, DAE-NRs can (i) improve the performance of
image reconstruction and (ii) increase the represen-
tational similarity between biological neurons and
artificial neurons. The DAE-NR offers a new per-
spective on the integration of computer vision and
visual neuroscience.

Figure 1: The illustration of the model of (a) the standard deep auto-encoder (DAE) for images reconstruction; (b) the convolutional neural
network with factorized readout (CNN-FR) for prediction of neuron responses; (c) the DAE with the neuron response (DAE-NR) for images
reconstruction and predictions of neuron responses. 8 is the biological neural response, the prediction of biological neural response is
represented as &, and h; (i € {1,2,3,4}) is the feature of the ith convolutional layer.
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Reconstructed images - some examples
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Figure 2: The reconstructed images with neurons in Region 3. From top to bottom, each row displays the original images (a), the images
reconstructed by DAE (b), DAE-NR (c), DAE-NR: (d), DAE-NR3z (e), DAE-NR (f), respectively
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Reconstructed images - Quantification

Table 1: ERFEMESZHENLLER. DAE-NREERREEAFEMRFRE

Table 1: The quantitative results of image reconstruction with all neurons in the region 1, 2, and 3, respectively.

Region 1 ~ Region 2 Region 3
Model MSE| PSNRt SSIMT | MSE, PSNR*T SSIM* | MSE| PSNRT SSIM?T
DAE 0.022 23709 0.771 0.024 23338 0.754 | 0.081 17.039 0.561
DAE-NR; | 0.021 23.829 0.776 | 0.023 23.392 (0.753 0.044 19.751 0.763
DAE-NR, | 0.021 23.779 0.775 | 0.023 23440 0.759 | 0.043 19.819 0.764
DAE-NR; | 0.021 23778 0.775 | 0.024 23330 0.755 | 0.043 19.789 0.761
DAE-NR,; | 0.022 23.721 0.773 0.023 23491 0.760 | 0.059 18.462 0.668
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Reconstructed images - Quantification

Table 1: R EMESZHENLSER. DAE-NREEIRE R EMHFRE

Table 1: The quantitative results of image reconstruction with all neurons in the region 1, 2, and 3, respectively.

Region 1 ~ Region 2 Region 3
Model MSE| PSNR?T SSIMT | MSE, PSNR?T SSIM?* | MSE| PSNRT SSIMt
DAE 0.022 23709 0.771 0.024 23338 0.754 | 0.081 17.039 0.561
DAE-NR; | 0.021 23.829 0.776 | 0.023 23.392 (0.753 0.044 19.751 0.763
DAE-NR, | 0.021 23.779 0.775 0.023 23440 0.759 | 0.043 19.819 0.764
DAE-NR; | 0.021 23778 0.775 | 0.024 23330 0.755 | 0.043 19.789 0.761
DAE-NR; | 0.022 23721 0.773 | 0.023 23491 0.760 | 0.059 18.462 0.668

Table 2: MIA5 AN THHEITTHIRALE ZE AR KMIAHEZTC, RE{REDAE-NRA & Jr E %

ﬁ'éble 2: The quantitative results of image reconstruction with constraints of significant neurons and insignificant neurons in the region 3.

MSE] SSIMT PSNRT
Significant | YES | NO | YES | NO | YES NO
“DAE-NR; | 0.043 | 0.125 | 0.761 | 0332 | 19.784 | 15.168
DAE-NR, | 0.047 | 0.082 | 0.743 | 0.547 | 19.467 | 16.970
DAENR; | 0.049 | 0.116 | 0.724 | 0362 | 19.245 | 15.463
DAENR, | 0.047 | 0.045 | 0.740 | 0.752 | 19.497 | 19.628




Representation similarity - biological & artificial neurons
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Take-home message

» We propose a novel model called Deep Autoencoder with Neural Response
(DAE-NR). It brings the neural information into DAE, which can simultaneously
learn to predict neural responses and to reconstruct the visual stimuli.

» DAE-NR can improve the image reconstruction quality with the help of a
Poisson loss on the predicted neural activity, compared to the traditional DAE
models.

» DAE-NR provides higher representation similarity between artificial neurons
and biological neurons, compared to the end-to-end computational
neuroscience model without the image reconstruction task (i.e., CNN-FR).



Other directions
emerging in combining Al and neuroscience

» Recurrent circuits in brain
« Jonas Kubilius et al. (2019), Brain-like object recognition with high-performing shallow recurrent ANNSs,
NeurlPS
« Kohitij Kar et al. (2019), Evidence that recurrent circuits are critical to the ventral stream’s execution of
core object recognition behavior, Nature Neurosci
> Sparsity
« Bryan Tripp (2017), Similarities and differences between stimulus tuning in the inferotemporal visual
cortex and convolutional networks, [JCNN
« Qingtian Zhang et al. (2019) A hierarchical sparse coding model predicts acoustic feature encoding in
both auditory midbrain and cortex, PLoS Comp Bio
» Top-down & bottom-up
« Sarthak Mittal et al. (2020), Learning to combine top-down and bottom-up signals in recurrent neural
networks with attention over modules, ICML
» Adversarial examples for human and Al
« lan J. Goodfellow et al. (2015), explaining and harnessing adversarial examples, ICLR
« Gamaleldin F. Elsayed et al. (2018), Adversarial Examples that Fool both Computer Vision and Time-
Limited Humans, NeurlPS



Thank you.
Any question is welcome.

Let’s do something together to understand Al & brain better.



