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»What is anomaly detection?

is a technique used to identify
assumed that most of the training dataset consists of “norma

anomalous data.

that do not conform to expected behaviour. It is
|” data, and we do not have a prior knowledge about

Cases:
1) MRI Images from patients with brain lesion.

2) Slice image of white blood cells.
3) EEG signal from patients with epilepsy.

White blood cells. Eosmophlls(Flrst row), EEG d
Eosinophil (Second row), Lymphocyte(Third ata.

row), Monocyte (Fourth row), and
Nuetrophil (Fifth row). [Chandola et al, 2009; Ma et al, 2020; Yuan et al., 2021]

Cavernous Hacmangioma(Top);
lymphoma(Middle); High grade
glioma(Bottom)



» Outlier detection vs. Novelty detection vs. Out-of-distribution detection
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» Type of Anomaly

Anomalies can be broadly classified into three types:
_ _ Type of Anomaly

1) point anomalies,

2) collective anomalies,

3) Contextual anomalies. | |

Point Contextual or Collective or
Conditional Group
[ May-22 1:14 pm FOOD Monaco Café |$1,127.80 }/
May-22 2:14 pm WINE Wine Bistro $28.00
Jun-14 2:14 pm MISC  Mobil Mart $75.00 ~N
Jun-14 2:05 pm MISC  Mobil Mart $75.00
Jun-15 2:06 pm MISC  Mobil Mart $75.00 .
=
Jun-15  11:49 pm MISC  Mobil Mart $75.00 S
May-28 6:14 pm WINE Acton shop $31.00 %
May-29 8:39 pm FOOD Crossroads $128.00 :
Jun-16 11:14 am MISC M0b|| Mart $75.00 MAR JUN SEPT DEC MAR JUNTlMS:PT DEC MAR JUN SEPT DEC
Jun-16  11:49 am MISC  Mobil Mart $75.00 g _J
Y
Illustrating Point and Collective anomaly. Illustration of contextual anomaly detection.
Credit Card Fraud Detection: Temperature data

[Aggarwal, 2013; Hayes and Capretz , 2015]



» Traditional anomaly detection

Traditional anomaly detection can be mainly classified into three types:
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Classification based anomaly detection

[Chandola et al, 2009]



»Deep anomaly detection (DAD) models

Deep anomaly detection (DAD) models can be broadly classified into three categories based on the extent of

availability of labels.

(1) Supervised deep anomaly detection.

(2) Semi-supervised deep anomaly detection.

Labelled data is very hard to obtain.

(3) Unsupervised deep anomaly detection: based on intrinsic properties of the data instances

Type of Models

Semi-supervised

Unsupervised

Hybrid

One-Class Neural
Networks




» Applications of Deep Anomaly Detection

Several applications of deep anomaly detection can be broadly classified into four types:
1) Fraud Detection

2) Intrusion Detection
3) Malware Detection
4) Medical Anomaly Detection

Technique Used Section References
AE Section|11.8 Wang et al. [2016], Cowton et al. [2018], Sato et al. [2018]
DBN Section|11.1 Turner et al. [2014], Sharma et al. [2016], Wulsin et al.

[2010], Ma et al. [2018], Zhang et al. [2016], Wulsin et al. [2011]
, Wu et al. [2015a]

RBM Section|11.1 Liao et al. [2016]

VAE Section|11.5 Xu et al. [2018], Lu and Xu [2018]

GAN Section|11.5 Ghasedi Dizaji et al. [2018], Chen and Konukoglu [2018]
LSTM ,RNN,GRU | Section|11.7 Yang and Gao [2018], Jagannatha and Yu [2016], Cowton et al.

[2018], O’Shea et al. [2016], Latif et al. [2018], Zhang and Zou
[201 8], Chauhan and Vig [2015], Gugulothu et al., Amarasinghe
et al. [2018Db]

CNN Section|11.6 Schmidt-Erfurth et al. [2018], Esteva et al. [2017], Wang et al.
[2016], Iakovidis et al. [2018]
Hybrid( AE+ KNN) | Section|11.6 Song et al. [2017] |

Examples of DAD techniques Used for medical anomaly detection

[Hayes and Capretz , 2015]



»Medical Anomaly Detection

Usecase 1

1) Cardiac Imaging
2) Gastrointestinal (Gl) Diseases Detection
3) Tumor Detection

Usecase 2
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»Supervised DAD models

Challenges :
1) hard to obtain their labels (Rare).

2) Data with error labels (Sometimes).

3) may change over time.

“Anomaly”

ECG time series /

-5.5

-5}

e 500 1000 1500 2000 2500 3000

ImageNet given label: ImageNet given label:

siamang

We guessed: baboon

red panda

We guessed: meerkat

MTurk consensus: baboon MTurk consensus: meerkat

MNIST given label:
8

We guessed: 9

MTurk consensus: ©

MNIST given label:

o

We guessed: 6

MTurk consensus: 6

https://labelerrors.com/
[Cheboli, 2010; Yarlagadda et al., 2018]



»Unsupervised DAD models

* Principal component analysis (PCA)
e Support vector machine (SVM)
* Isolation Forest techniques

 Autoencoders

These models assume a high

prevalence of normal instances

than abnormal data instances,

which would result in high false

positive rate.

Table 22: Examples of Un-supervised DAD techniques .
CNN: Convolution Neural Networks, LSTM : Long Short Term Memory Networks
DNN : Deep Neural Networks., GAN: Generative Adversarial Network
AE: Autoencoders, DAE: Denoising Autoencoders, SVM: Support Vector Machines
STN: Spatial Transformer Networks, RNN : Recurrent Neural Networks
AAE: Adversarial Autoencoders, VAE : Variational Autoencoders.

Techniques Section References

LSTM Section 11.7 Singh [2017], Chandola et al. [2008], Dasigi and Hovy
[2014],Malhotra et al. [2015]

AE Section 11.8 Abati et al. [2018], Zong et al. [2018], Tagawa et al.
[2015], Dau et al. [2014], Sakurada and Yairi [2014], Wu
et al. [2015a],

Xu et al. [2015], Hawkins et al. [2002], Zhao et al.
[2015], Qi et al. [2014], Chalapathy et al. [2017], Yang
et al. [2015],

Zhai et al. [2016], Lyudchik [2016], Lu et al.
[2017], Mehrotra et al. [2017], Meng et al. [2018],Par-
chami et al. [2017]

STN Section 11.2 Chianucci and Savakis [2016]

GAN Section 11.5 Lawson et al. [2017]

RNN Section 11.7 Dasigi and Hovy [2014],Filonov et al. [2017]

AAE Section 11.5 Dimokranitou [2017], Leveau and Joly [2017]

VAE Section 11.5 An and Cho [2015], Suh et al. [2016], Solch et al.

[2016], Xu et al. [2018], Mishra et al. [2017]

[Patterson and Gibson, 2017; Tuor et al., 2017; Wold et al., 1987; Liu et al., 2008; Cortes and Vapnik, 1995 ]




> Autoencoder

An autoencoder is a neural network that is trained by unsupervised learning. It is trained to learn
reconstructions that are as close as possible to the original input.

An autoencoder is composed of two parts, an encoder and a decoder.

An autoencoder with a single hidden layer has an h = o(Wahx + byp) (1)
encoder and decoder as in eq(1) and eq(2). 2 = o (Whgh + brs) 2)
W and b is the weight and bias; |z — 2|| (3)

o is the nonlinear transformation function.

minlix-2ll Algorithm 1 Autoencoder training algorithm
INPUT: Dataset z(V, ... ()
@) OUTPUT: encoder fy4, decoder gp
C
o S ¢, 0 < Initialize parameters
o C
= - repeat
) . . :
b -%; E = Zfi lz® — go(f4(z®))|| Calculate sum of reconstruction error
e

¢, 6 < Update parameters using gradients of F(e.g. Stochastic Gradient Descent)

until convergence of parameters ¢, 6




»Deep autoencoder

* The auto-encoder can be deep. The symmetric weights re not necessary.

As close as possible v

-
©
c
—
—
Q
<
Q)
-

Code Initialize by RBM
layer-by-layer

=D

Embedding, Latent Representation, Latent Code

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. (2006) "Reducing the dimensionality of data with neural networks." Science



» Principle Component Analysis (PCA) VS. Autoencoder

Minimize X — %Il Minimize ||x — Z||
l As close as possible 1 As close as possible
v \ 4
% X X
X encode decode
i NN NN »
» Encoder Decoder
W wT << 784
28 X28=784 ) 28 X28=784 28 X28=784 28 X 28 =784
hidden layer hidden layer
(linear) (nonlinear)
Bottleneck/code Bottleneck/code
Projection is linear, and W is orthonormal. The encoder and decoder learn together.

is @ compact representation of the input object.



» Performance comparison between PCA and Deep Autoencoder

Original Image t / ; % q
I
Deep Autoencoder L / 3 ?) q

o o o

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. (2006) "Reducing the dimensionality of data with neural networks." Science




» Latent representation in PCA VS. Deep Autoencoder

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. (2006) "Reducing the dimensionality of data with neural networks." Science



» Autoencoder-based anomaly detection

Autoencoder-based DAD is a deviation-based anomaly detection method using semi-supervised learning.

It uses the as the anomaly . Data points with high reconstruction error are anomalies.
Only data with normal instances are used to train the autoencoder.

After training, the autoencoder will reconstruct normal data very well, while failing to reconstruct anomaly data
which the autoencoder has not encountered.

Algorithm 2 Autoencoder based anomaly detection algorithm
INPUT: Normal dataset X, Anomalous dataset z(® i=1,--- N, threshold «

OUTPUT: reconstruction error ||z — Z|
Algorithm 2 shows the

¢, 0 < train a autoencoder using the normal dataset X
anomaly detection algorithm for i=1 to N do

i ; tructi ) = ||z(®) — (%)
using reconstruction errors reconstruchion enror(§) = | —ga{fs (a5
if reconstruction error(i) > o then

of autoencoders. T —
y
else
z® is not an anomaly
end if

end for




»Variational Autoencoder (VAE)

» Avariational autoencoder (VAE) is a directed probabilistic graphical model (DPGM) whose posterior is
approximated by a neural network, forming an autoencoder-like architecture.

* Inthe VAE, the highest layer of the directed graphical model z is treated as the latent variable where the
generative process starts.

* g(z) represents the complex process of data generation that results in the data x, which is modelled in
the structure of a neural network.




> Autoencoder
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» Application of Autoencoder

Encodlng to Spikes Decoding from Spikes

Autoencoder

Po. M/

Fig. 1: The schematic diagram of DSPD framework.

Sound signals

Tasks

Signal
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Object
Recognition

Semantic
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Objects
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DSPD-82-V1

DSPD-§2-V2

DSPD-83-V1

DSPD-83-V2

=

Reconstructed with 90 training samples Reconstructed wi

h 300 training samples

Fig. 5: Presented fMRI characters and Reconstructed Results
of DSPD three subjects S1, 52 and 53 from the V1 and V2
areas (the left images are with 90 training samples and the
right images are with 300 training samples).



» Application of Autoencoder
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»Variational Autoencoder (VAE)

The objective function of a VAE is the variational lower bound of the marginal likelihood of data, since the
marginal likelihood is intractable. The marginal likelihood is the sum over the marginal likelihood of individual data
points that can be rewritten as follows.

log pp(z”) = Dic1.(g4(217)Ipo(2)) + £(6, ¢ 219) (4)
Equation (4) can be rewritten as follows.
log pp(z¥)) > L(6, ¢; %) (5)
= E,, (zlo)[— log g4 (z|z) + log pe(z|2)] (6)
= —Dk1(g4(212™)|Ips(2)) + Eq, (22 log po(z|2)] (7)

Algorithm 3 Variational autoencoder training algorithm
INPUT: Dataset z(!), ... (&)

OUTPUT: probabilistic encoder f, probabilistic decoder gy

¢, 0 < Initialize parameters
repeat
for i=1 to N do
Draw L samples from € ~ N(0,1)
Z(Zyl) :h(b(e(z),x(z)) i: 1,-.. ’N
end for
B =Y, —Dkr(a4(2129)|lpo(2)) + £ T, (log ps (D [200))
¢, 0 < Update parameters using gradients of E (e.g. Stochastic Gradient Descent)

until convergence of parameters ¢, 0




»VAE based anomaly detection
VAE based anomaly detection uses reconstruction probability as the anomaly score. Reconstruction probability is
computed as the probability of data from the reconstructed sample distribution. Only data with normal instances are used
to train the VAE. After training, the reconstructed distribution covers normal data very well, while anomaly data is not in
that distribution.

Algorithm 4 Variational autoencoder based anomaly detection algorithm
INPUT: Normal dataset X, Anomalous dataset z( i=1,---,N, threshold «

OUTPUT: reconstruction probability pg(z|Z)

¢, 0 < train a variational autoencoder using the normal dataset X
for i=1 to N do
oy O = fo(z]z®)

Algorithm 4 shows the anomaly draw L samples from 2 ~ N(pt.co; 00

detection algorithm using o 1 to L do
. oge l‘l’;i;(’i-,l)9 o-:i'(""’l) = gd)(xlz('t,l))
reconstruction probability of VAE. e

reconstruction probability(i) = 1 Zlel po(z0 | gy, Ta60)
if reconstruction probability(i) < o then
z@ is an anomaly
else
z® is not an anomaly
end if

end for




» Likelihood-based generative models for OOD Detection

There are widely views that likelihood-based generative models have high robustness to the out-of-distribution
(OOD) mputs and a well-calibrated generative models can be as a detector. However, recent works reported a
phenomenon that DGM recognizes some OOD samples as ID by assigning a higher likelihood to the OOD inputs
compared to the one from ID.
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Figure 3: PixelCNN and VAE. Log-likelihoods calculated by PixelCNN (a, c¢) and VAE (b, d) on
FashionMNIST vs MNIST (a, b) and CIFAR-10 vs SVHN (¢, d). VAE models are the convolutional

categorical variant described by Rosca et al. (2018).

(Choi et al., 2018; Nalisnick et al., 2019a; Hendrycks et al., 2019;
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> Likelihood-based generative models for OOD Detection-Why ?

Bu'tepage et al. conjectured that this phenomenon is caused by modeling assumptions and evaluation
schemes. The modeling assumption on the likelihood function(e.g., iid Bernoulli, iid Gaussian) can influence the
judgment of the model and the local evaluation under the approximated posterior leads to high confidence in
some datasets.

PR with Bernoulli likelihood PR with Gaussian likelihood
0.004 - FashionMNIST 0.04
MNIST
0.002 - 0.02 -
0.000 0.00

—-2500 -2000 -1500 -1000 -500 —400 —350 —300

The log likelihood under the prior using model M.with an iid Bernoulli likelihood
function ((left) ) and model M. with an iid Gaussian likelihood function (right)

(Bu'tepage et al., 2019)



> Likelihood-based generative models for OOD Detection-Why ?

Serra’ et al
likelihoods.

pose that this problem is due to the excessive influence that input complexity has in generative models’

E—l e CIFAR10 (Train) e CIFAR100 (Test)

N, CIFARI1O (Test) CelebA (Test)

§ Constant (Test) e FaceScrub (Test)

‘5 | = Omniglot (Test) TinyImageNet (Test)

g" MNIST (Test) TrafficSign (Test)

_g FashionMNIST (Test) e Noise (Test)

Q we=  SVHN (Test)

e S

z N

2 SN, /| /

-10 -8 —6 —4 -2 0

‘M

Log-likelihoods from a Glow model trained on CIFAR10. Qualitatively similar results are obtained for a PixelCNN++ model and when training with
FashionMNIST

[Serra et al ,2020]



> Likelihood-based generative models for OOD Detection-Why ?

[ | e CIFAR10 (Test)
a Pooling = 1
g Pooling = 2
‘5 | = Pooling =4 n
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Pooled-image log-likelihoods obtained from a Glow model trained on CIFAR10. Qualitatively similar results are obtained for a PixelCNN++ model.

[Serra et al ,2020]



» INCPVAE- Improved Noise Contrastive Priors

Hafner et al. proposed NCPs, as a kind of data priors that are applied to both ID inputs x and OOD inputs X. The OOD

inputs are usually generated by imposing noise. For it is hard to exactly generate OOD data, we add Gaussian noise to
ID image to realize OOD data generation.

1) Generating OOD Inputs
2) Data Priors
3) Loss Function

Generating OOD Inputs Lee et al. reported that OOD samples are produced by sampling from the boundary of the ID
with high uncertainty. advanced an algorithm inspired by noise contrastive estimation where a complement
distribution is approximated using random noise. For continuous ID inputs x, we add Gaussian noise to obtain OOD
inputs, which is X = x + €. The distribution density of OOD inputs p.(X') is formulated as,

Baseline Noise Baseline+Noise

Po(Z) = / pi(z)N (53 — | ,LL,O'2I) dx, +
” - " -y

where pi(x) is the distribution density of ID inputs, u and oc.are the mean and variance of Gaussian distribution of
noise. In order to make noise contrastive prior equal in all directions of data manifold, we set p = 0. The variance o:is
a hyper-parameter to tune the sampling distance from the boundary of training distribution. The complexity of OOD
inputs is correlated with the variance.

[Gutmann and Hyvarinen, 2010; Mnih and Kavukcuoglu,2013; Hafner et al., 2018; Lee et al., 2018a]




» INCPVAE- Improved Noise Contrastive Priors

Data Priors The data priors consist of inputs prior p(x) and outputs prior p(z|x). To obtain a reliable VAE’s uncertainty
estimation, an appropriate inputs prior should include OOD inputs so that it can obtain better performance than the

baseline under training distribution. A good output prior should be a high-entropy distribution that serves as high
uncertainty about VAE’s target outputs given OOD inputs. The data priors are listed as follows:

p(i) = po(j)
p(2|Z) =N (2| ps,031),

where p.(X’) is the distribution of OOD inputs, prand c.are the parameter of OOD data outputs priors, o:is a hyper-
parameter tuning the level of target outputs uncertainty.

Loss Function Improved Noise Contrastive Priors (INCPs) have the merit of estimating the model’s uncertainty which is
easily generalized to OOD samples. To train INCPs, we modified the loss function as follows:

L(e) - qu(z|m) [DKL [Qg(z | :l}) || p(z | ZB)]]
+7Eq,z13) [ DPxrla0(2 | 2) || p(Z | 2)] ],

where p(Z' | X') denote OOD data priors, 0 is the parameter of neural network. The hyper-parameter y represents the
trade-off between them. INCPs can be trained by minimizing this loss.

[Gutmann and Hyvarinen, 2010; Mnih and Kavukcuoglu,2013; Hafner et al., 2018; Lee et al., 2018a]



» Improved noise contrastive prior variational autoencoder (INCPVAE)

INCPVAE consists of an encoder and a decoder.

The improved NCPs are imposed on the encoder network of VAE.

INCPVAE is trained on both in-distribution (ID) and OOD inputs by minimizing I-ELBO and O-ELBO.
We have all the evidence lower bound (ELBO) of INCPVAE as follows:

L1(¢,0) = Ezrngy(zle) l0gps(x | 2)] = Drrlge(z | z)|[p(2)]
Lo(#,0) = Ezngy(z12) logps(Z || 2)] — Dxrlge(Z | 2)|p(2)]

Lincp(9,0) = L1(¢,0) + Lo(e,0)

Maximizing the ELBO of INCPVAE can be replaced by minimizing the following loss function:

Lincpvae(¢,0) = —L1(¢,0) +vDkrlge(Z|Z)|p(Z|Z)]
INCP—-KL Loss

Xuming Ran, et al. (2020), arXiv:2007.08128




» Uncertainty estimation in INCPVAE

We proposed the objective variational ELBO Ratios for quantitative evaluation of VAE.
We tested all the ID samples of ELBO (I-ELBO) and get the maximum one ( I-ELBO(zq2) ).

ELBO Ratio that is defined as ELBO(z)

I-ELBO (%104

U(xo) =

The greater scalar U(zo) is, the higher uncertainty 20 acquires.
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> 00D detection based on INCPVAE

The density estimation of VAE are always used for OOD detection, but the OOD inputs get a higher
likelihoods than ID inputs that occur some datasets. To solve this problem, Ren et al. (2019) proposed
Likelihood Ratios for OOD detection.

INCP-KL Ratios for OOD detection. We test all the OOD samples of INCP-KL and get the maximum
one (called Dk, (OO D4, ) ). INCP-KL Ratio that is defined as

KLR(zo) = DKLI0(Z0l20)|P(]2)

) (11)
0 IC[,R(wo) >
<

Label(xq) = { 1 KLR(xo)

where Label(xo) = 1, the test sample o is OOD data; Label(xo) = 0, o is not OOD data (x¢
does not belong to OOD data).
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> 00D detection based on INCPVAE

Table 1: AUROC and AUPRC for detecting OOD inputs using our INCP-KL Ratio method, likelihood
method and other baseline methods on FashionMNIST vs. MNIST datasets.

Model AUROC AUPRC
NCP-KL Ratio(Baseline+Noise) 1.000 1.000
NCP-KL Ratio(Baseline) 1.000 1.000
Likelihood 0.035 0.313
Likelihood Ratio(xz) Ren et al. (2019) 0.973 0.951
Likelihood Ratio(u, A) Ren et al. (2019) 0.994 0.993
ODIN Liang et al. (2018) 0.752 0.763
Mahalanobis distance Lee et al. (2018b) 0.942 0.928
Ensemble, 20 classifiers Lakshminarayanan et al. (2017) 0.857 0.849
WAIC,5 models Choi et al. (2018) 0.221 0.401

In our INCPVAE model, OOD samples are generated by adding gussian noise, endowing VAE with reliable uncertainty
estimation for inputs and the ability of distinguishing OOD data. Using INCP-KL ratios our model achieves SOTA
performance to differentiate OOD and ID data, compared with baseline methods.



» Does input complexity has a strong effect in VAE?
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»Does input complexity has a strong effect in VAE?
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»Bigeminal Priors Variational auto-encoder (BPVAE)

We propose a method that feeds the external dataset (called the simple dataset) as inputs while training VAEs on
the training dataset (called the basic dataset), which is more straightforward than training VAE on the basic dataset.
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» Bigeminal Priors Variational auto-encoder (BPVAE)

VAEs can learn the features from two data distributions, assigning a higher likelihood for the basic dataset than the
simple dataset. And the density estimate of VAEs can be used for detecting OOD samples.

X X




»Bigeminal Priors Variational auto-encoder (BPVAE)

The BPVAE consists of an encoder, a decoder, and two priors (b-prior and s-prior). We assume that
both the b-prior and s-prior belong to normal distribution. And we use the variance of a normal

distribution to represent the uncertainty level. The priors are formulated as followings
2
po(2) ~ N(z | pz, 031)
~ ~ 2
ps(z) ™~ N (Z ‘ Uz, 021)

where the mean value p,=uz= 0.0 zis always set to be greater thanO 3 so that b-prior has enough
capacity to capture the basic dataset features.
We modified the loss function as follows:

log p(x) + log p(y) =Ezngy(zle) log pg(@ | 2)] — Dk1 |q0(2 | ) |[ps(2)]
+ Ezng(2ly) 108Ps(Y | 2)] — Drr [90(2 | y)llps(2)]
where qo(Z | y) and g¢(z | ) are the variational posterior for the simple and basic dataset, go(Z | y)

and go(z | x) are the decoder for the simple and basic data, and which are modeled by a neural
network with their parameters 6 and ¢, respectively.



> Result for BPVAE

It is evident that BPVAEs obtain much better performance than standard VAEs on MNIST, while
these two models achieve comparable results on CIFAR1O0.

m/7a/9?q\Q¢

VAE

Original

BPVAE

VAE

(b) Test on CIFAR10

Reconstruction performance for MNIST and CIFAR10 by VAEs and BPVAEs. Here CIFAR10 is used as
basic dataset and MNIST is used as simple dataset.



» Evaluation of BPVAE

The tables demonstrate that BPVAEs can obtain much better performance than standard VAEs no matter it is
evaluated by MSE, PSNR or SSIM.

Table 1: Evaluation on the basic dataset and the simple dataset
Method MSE PSNR  SSIM

BPVAE 0.017 18.250 0.544
VAE 0.016  18.282 0.543

BPVAE 0.007 22.392 0.909
VAE 0.0346 14.831 0.601

Evaluation on basic dataset

Evaluation on simple dataset




» Analysis of BPVAE

Our model can cover all key representation and shift all the data distribution toward the lower-
likelihood area, via combining multiple priors and training BPVAEs on a variety of selected datasets.
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» Analysis of BPVAE

As depicted in the following table, our BPVAEs can achieve higher AUROC and AUPRC values then Standard
VAEs, meanwhile surpassing other classical baselines. Overall, these comprehensive comparisons suggest
that our proposed model is equipped with strong robustness and detection capability.

Table 2: AUROC and AUPRC for detecting OOD inputs using likelihoods of BPVAE, likelihood of
VAE, and other baselines on FashionMNIST vs. MNIST datasets.

Model AUROC AUPRC
BPVAE(ours) 1.000 1.000
Standard VAE 0.012 0.113
Likelihood Ratio(u, A) [Ren et al.|(2019) 0.994 0.993
ODIN [Liang et al.|(2018) 0.752 0.763
Mahalanobis distance Lee et al. (2018) 0.942 0.928

Ensemble, 20 classifiers [Lakshminarayanan et al.|(2017) 0.857 0.849
WAIC,5 models |Choi et al.| (2018) 0.221 0.401




»Summary

* INCPVAE

e We apply tailored metrics to uncertainty estimation, by using which our INCPVAE framework achieve
reliable uncertainty estimation and enhanced robustness.

 We propose a novel OOD detection method via INCP-KL divergence of INCPVAE Experiments demonstrate
that the INCPVAE gains an excellent understanding for the OOD inputs and our detection method achieves
state-of-the-art (SOTA) performance on the challenging cases raised by Nalisnick et al. (2019a).

* BPVAE

* VAEs can be well- calibrated by shifting the likelihood distribution of data with simpler complexity to lower-
likelihood intervals compared to basic dataset, in which way the high-likelihoods problem of OOD can be
overcome to a large extent.

 we only impose the proposed approach on VAE model, designing the hybrid latent priors for other models
like Glow, PixelCNN will be an interesting research topic. And we are expected to continue related
exploration further.
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