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ØWhat is anomaly detection?
Anomaly detec,on is a technique used to iden-fy unusual pa0erns that do not conform to expected behaviour. It is
assumed that most of the training dataset consists of “normal” data, and we do not have a prior knowledge about
anomalous data.
Cases:

1) MRI Images from pa-ents with brain lesion.
2) Slice image of white blood cells.
3) EEG signal from pa-ents with epilepsy.

[Chandola et al, 2009; Ma et al, 2020; Yuan et al., 2021]   

Cavernous Hacmangioma(Top); 
lymphoma(Middle); High grade

glioma(Bo*om)

White blood cells. Eosinophils(First row),  
Eosinophil (Second row), Lymphocyte(Third 

row), Monocyte (Fourth row), and 
Nuetrophil(Fi8h row).

EEG data.



ØOutlier detec4on vs. Novelty detec4on vs. Out-of-distribu4on detec4on

Outlier
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ØType of Anomaly 
Anomalies can be broadly classified into three types:

1) point anomalies,
2) collec-ve anomalies,
3) Contextual anomalies.

IllustraCng Point and CollecCve anomaly.
Credit Card Fraud DetecCon: 

IllustraCon of contextual anomaly detecCon.
Temperature data 

[Aggarwal, 2013; Hayes and Capretz , 2015] 



Ø Tradi4onal anomaly detec4on 
Tradi-onal anomaly detec-on can be mainly classified into three types:

1) Classifica-on based anomaly detec-on 
a) Support vector machines (SVM)
b) One classifica-on SVM

2) Clustering-based anomaly detec-on
a) Mul-variate gaussian Models 
b) K-Nearest-neighbour (KNN)

[Chandola et al, 2009] ClassificaCon based anomaly detecCon 

Clustering-based anomaly detecCon



Deep anomaly detec-on (DAD) models can be broadly classified into three categories based on the extent of 
availability of labels.

(1) Supervised deep anomaly detec-on. 

(2) Semi-supervised deep anomaly detec-on. 

(3) Unsupervised deep anomaly detec-on: based on intrinsic proper-es of the data instances

ØDeep anomaly detec4on (DAD) models

Labelled data is very hard to obtain.



ØApplica*ons of Deep Anomaly Detec*on 
Several applica-ons of deep anomaly detec-on can be broadly classified into four types:

1) Fraud Detec-on 
2) Intrusion Detec-on 
3) Malware Detec-on 
4) Medical Anomaly Detec-on 

[Hayes and Capretz , 2015] 

Examples of DAD techniques Used for medical anomaly detec-on 



ØMedical Anomaly Detec*on 

1) Cardiac Imaging
2) Gastrointes-nal (GI) Diseases Detec-on
3) Tumor Detec-on

[Hayes and Capretz , 2015] 



ØSupervised DAD models

Challenges :
1) hard to obtain their labels (Rare).
2) Data with error labels (Sometimes).
3) may change over time.

[Cheboli, 2010; Yarlagadda et al., 2018]   

hcps://labelerrors.com/



• Principal component analysis (PCA)

• Support vector machine (SVM) 

• Isola;on Forest techniques 

• Autoencoders

[Pacerson and Gibson, 2017; Tuor et al., 2017; Wold et al., 1987; Liu et al., 2008; Cortes and Vapnik, 1995 ] 

ØUnsupervised DAD models

These models assume a high 

prevalence of normal instances 

than abnormal data instances,

which would result in high false 

posi;ve rate.



An autoencoder is a neural network that is trained by unsupervised learning. It is trained to learn 
reconstruc;ons that are as close as possible to the original input. 
An autoencoder is composed of two parts, an encoder and a decoder. 

ØAutoencoder

An autoencoder with a single hidden layer has an 
encoder and decoder as in eq(1) and eq(2).

W and b is the weight and bias;
σ is the nonlinear transforma-on func-on.
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Initialize by RBM 
layer-by-layer

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. (2006) "Reducing the dimensionality of data with neural networks." Science

• The auto-encoder can be deep.
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ØDeep autoencoder
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ØPrinciple Component Analysis (PCA) vs. Autoencoder

The encoder and decoder learn together.
Code is a compact representa;on of the input object.
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ØPerformance comparison between PCA and Deep Autoencoder

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. (2006) "Reducing the dimensionality of data with neural networks." Science
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ØLatent representa4on in PCA vs. Deep Autoencoder

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. (2006) "Reducing the dimensionality of data with neural networks." Science



Autoencoder-based DAD is a devia0on-based anomaly detec0on method using semi-supervised learning. 
It uses the reconstruc0on error as the anomaly score. Data points with high reconstruc;on error are anomalies. 
Only data with normal instances are used to train the autoencoder. 
AOer training, the autoencoder will reconstruct normal data very well, while failing to reconstruct anomaly data
which the autoencoder has not encountered. 

ØAutoencoder-based anomaly detec4on

Algorithm 2 shows the 

anomaly detec-on algorithm 

using reconstruc,on errors 

of autoencoders.



• A variational autoencoder (VAE) is a directed probabilistic graphical model (DPGM) whose posterior is 
approximated by a neural network, forming an autoencoder-like architecture. 

• In the VAE, the highest layer of the directed graphical model z is treated as the latent variable where the 
generative process starts. 

• g(z) represents the complex process of data generation that results in the data x, which is modelled in 
the structure of a neural network. 

ØVaria4onal Autoencoder (VAE)



ØAutoencoder



ØApplica4on of Autoencoder



ØApplica4on of Autoencoder

Nature, High-performance brain-to-text communica-on via handwri-ng, 2021



The objec-ve func-on of a VAE is the varia-onal lower bound of the marginal likelihood of data, since the
marginal likelihood is intractable. The marginal likelihood is the sum over the marginal likelihood of individual data
points that can be rewricen as follows.

Equa-on (4) can be rewricen as follows.

ØVariational Autoencoder (VAE)



VAE based anomaly detec-on uses reconstruc,on probability as the anomaly score. Reconstruc-on probability is
computed as the probability of data from the reconstructed sample distribu-on. Only data with normal instances are used
to train the VAE. Aker training, the reconstructed distribu-on covers normal data very well, while anomaly data is not in
that distribu-on.

ØVAE based anomaly detec4on

Algorithm 4 shows the anomaly 

detec-on algorithm using 

reconstruc,on probability of VAE.



There are widely views that likelihood-based generative models have high robustness to the out-of-distribution
(OOD) inputs and a well-calibrated generative models can be as a detector. However, recent works reported a
phenomenon that DGM recognizes some OOD samples as ID by assigning a higher likelihood to the OOD inputs
compared to the one from ID.

(Choi et al., 2018; Nalisnick et al., 2019a; Hendrycks et al., 2019; Bishop,1994)

ØLikelihood-based genera4ve models for OOD Detec4on 



(Bu ẗepage et al. , 2019)

Bu ẗepage et al. conjectured that this phenomenon is caused by modeling assump-ons and evalua-on
schemes. The modeling assump-on on the likelihood func-on(e.g., iid Bernoulli, iid Gaussian) can influence the
judgment of the model and the local evalua-on under the approximated posterior leads to high confidence in
some datasets.

The log likelihood under the prior using model M1 with an iid Bernoulli likelihood 
func-on ((lek) ) and model M2 with an iid Gaussian likelihood func-on (right) 

ØLikelihood-based genera4ve models for OOD Detec4on-Why？



.

ØLikelihood-based genera4ve models for OOD Detec4on-Why？

Log-likelihoods from a Glow model trained on CIFAR10. QualitaEvely similar results are obtained for a PixelCNN++ model and when training with 
FashionMNIST

Serra` et al pose that this problem is due to the excessive influence that input complexity has in genera-ve models’
likelihoods.

[Serra` et al ,2020]



.

ØLikelihood-based genera4ve models for OOD Detec4on-Why？

Pooled-image log-likelihoods obtained from a Glow model trained on CIFAR10. Qualita@vely similar results are obtained for a PixelCNN++ model. 

[Serra` et al ,2020]



Hafner et al. proposed NCPs, as a kind of data priors that are applied to both ID inputs x and OOD inputs x .̃ The OOD
inputs are usually generated by imposing noise. For it is hard to exactly generate OOD data, we add Gaussian noise to
ID image to realize OOD data genera-on.

1) Genera,ng OOD Inputs
2) Data Priors
3) Loss Func,on

ØINCPVAE- Improved Noise Contras4ve Priors 

Genera,ng OOD Inputs Lee et al. reported that OOD samples are produced by sampling from the boundary of the ID
with high uncertainty. advanced an algorithm inspired by noise contras-ve es-ma-on where a complement
distribu-on is approximated using random noise. For con-nuous ID inputs x, we add Gaussian noise to obtain OOD
inputs, which is x ̃ = x + ε. The distribu-on density of OOD inputs po(x )̃ is formulated as,

[Gutmann and Hyvärinen, 2010; Mnih and Kavukcuoglu,2013; Hafner et al., 2018; Lee et al., 2018a] 

where pi(x) is the distribu-on density of ID inputs, μ and σ2 are the mean and variance of Gaussian distribu-on of
noise. In order to make noise contras-ve prior equal in all direc-ons of data manifold, we set μ = 0. The variance σ2 is
a hyper-parameter to tune the sampling distance from the boundary of training distribu-on. The complexity of OOD
inputs is correlated with the variance.



Data Priors The data priors consist of inputs prior p(x) and outputs prior p(z|x). To obtain a reliable VAE’s uncertainty
es-ma-on, an appropriate inputs prior should include OOD inputs so that it can obtain becer performance than the
baseline under training distribu-on. A good output prior should be a high-entropy distribu-on that serves as high
uncertainty about VAE’s target outputs given OOD inputs. The data priors are listed as follows:

ØINCPVAE- Improved Noise Contras4ve Priors 

[Gutmann and Hyvärinen, 2010; Mnih and Kavukcuoglu,2013; Hafner et al., 2018; Lee et al., 2018a] 

where po(x )̃ is the distribu-on of OOD inputs, μx ̃ and σ2 are the parameter of OOD data outputs priors, σ2 is a hyper-
parameter tuning the level of target outputs uncertainty.

Loss Func,on Improved Noise Contras-ve Priors (INCPs) have the merit of es-ma-ng the model’s uncertainty which is 
easily generalized to OOD samples. To train INCPs, we modified the loss func-on as follows: 

where p(z ̃ | x )̃ denote OOD data priors, θ is the parameter of neural network. The hyper-parameter γ represents the 
trade-off between them. INCPs can be trained by minimizing this loss. 



INCPVAE consists of an encoder and a decoder.
The improved NCPs are imposed on the encoder network of VAE. 
INCPVAE is trained on both in-distribu;on (ID) and OOD inputs by minimizing I-ELBO and O-ELBO. 
We have all the evidence lower bound (ELBO) of INCPVAE as follows: 

Maximizing the ELBO of INCPVAE can be replaced by minimizing the following loss func;on: 

ØImproved noise contras4ve prior varia4onal autoencoder (INCPVAE)

Xuming Ran, et al. (2020), arXiv:2007.08128



We proposed the objec;ve varia;onal ELBO Ra;os for quan;ta;ve evalua;on of VAE.
We tested all the ID samples of ELBO (I-ELBO) and get the maximum one (                         ). 
ELBO Ra;o that is defined as

The greater scalar         is, the higher uncertainty  acquires.

Xuming Ran, et al. (2020), arXiv:2007.08128

FashionMNIST MNIST

INCPVAE provides higher 
uncertainty for the OOD data.

ØUncertainty es4ma4on in INCPVAE



The density es;ma;on of VAE are always used for OOD detec;on, but the OOD inputs get a higher
likelihoods than ID inputs that occur some datasets. To solve this problem, Ren et al. (2019) proposed
Likelihood Ra;os for OOD detec;on.

The likelihood distribu-ons of VAE for the ID and
OOD inputs have considerable overlaps, whereas
the INCP-KL of INCPVAE largely separate ID and
OOD inputs.

ØOOD detec4on based on INCPVAE



ØOOD detec4on based on INCPVAE

In our INCPVAE model, OOD samples are generated by adding gussian noise, endowing VAE with reliable uncertainty
es-ma-on for inputs and the ability of dis-nguishing OOD data. Using INCP-KL ra-os our model achieves SOTA
performance to differen-ate OOD and ID data, compared with baseline methods.



Ø Does input complexity has a strong effect in VAE?



ØDoes input complexity has a strong effect in VAE?



ØBigeminal Priors Varia*onal auto-encoder (BPVAE)

We propose a method that feeds the external dataset (called the simple dataset) as inputs while training VAEs on 
the training dataset (called the basic dataset), which is more straigh|orward than training VAE on the basic dataset. 



ØBigeminal Priors Varia*onal auto-encoder (BPVAE)

VAEs can learn the features from two data distribu-ons, assigning a higher likelihood for the basic dataset than the 
simple dataset. And the density es-mate of VAEs can be used for detec-ng OOD samples.



The BPVAE consists of an encoder, a decoder, and two priors (b-prior and s-prior). We assume that 
both the b-prior and s-prior belong to normal distribu-on. And we use the variance of a normal 
distribu-on to represent the uncertainty level. The priors are formulated as followings

where the mean value                     .      is always set to be greater than       so that b-prior has enough 
capacity to capture the basic dataset features. 
We modified the loss func-on as follows:

ØBigeminal Priors Varia*onal auto-encoder (BPVAE)



ØResult for BPVAE
It is evident that BPVAEs obtain much becer performance than standard VAEs on MNIST, while 
these two models achieve comparable results on CIFAR10.

Reconstruc-on performance for MNIST and CIFAR10 by VAEs and BPVAEs. Here CIFAR10 is used as 
basic dataset and MNIST is used as simple dataset.



ØEvalua*on of BPVAE

The tables demonstrate that BPVAEs can obtain much becer performance than standard VAEs no macer it is
evaluated by MSE, PSNR or SSIM.



Our model can cover all key representa-on and shik all the data distribu-on toward the lower-
likelihood area, via combining mul-ple priors and training BPVAEs on a variety of selected datasets.

ØAnalysis of BPVAE



As depicted in the following table, our BPVAEs can achieve higher AUROC and AUPRC values then Standard 
VAEs, meanwhile surpassing other classical baselines. Overall, these comprehensive comparisons suggest 
that our proposed model is equipped with strong robustness and detec-on capability.

ØAnalysis of BPVAE



ØSummary

• INCPVAE
• We apply tailored metrics to uncertainty es-ma-on, by using which our INCPVAE framework achieve

reliable uncertainty es-ma-on and enhanced robustness.
• We propose a novel OOD detec-on method via INCP-KL divergence of INCPVAE Experiments demonstrate

that the INCPVAE gains an excellent understanding for the OOD inputs and our detec-on method achieves
state-of-the-art (SOTA) performance on the challenging cases raised by Nalisnick et al. (2019a).

• BPVAE
• VAEs can be well- calibrated by shiking the likelihood distribu-on of data with simpler complexity to lower-

likelihood intervals compared to basic dataset, in which way the high-likelihoods problem of OOD can be
overcome to a large extent.

• we only impose the proposed approach on VAE model, designing the hybrid latent priors for other models
like Glow, PixelCNN will be an interes-ng research topic. And we are expected to con-nue related
explora-on further.
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Thank you.
Any question is welcome.

44


